Coding Global Background
Coding Global

Huggingface Serverless free LLM inference API

Archiviert 2 years ago
3 Nachrichten
0 Mitglieder
2 years ago
In Discord öffnen
M
🔥
Member

```python from flask import Flask, request, jsonify, send_file import requests app = Flask(__name__) LLModel = "bigscience/bloom" ApiUrl = "https://api-inference.huggingface.co/models/" + LLModel minOutputTokens = 500000 headers = {"Authorization": "Bearer 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"} past_user_inputs = [] generated_responses = [] def query(api_url, headers, payload, min_length): try: payload["min_length"] = min_length response = requests.post(api_url, headers=headers, json=payload) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: print("Error in processing the request:", e) return None @app.route('/') def index(): return send_file('static/index.html') @app.route('/chat', methods=['POST']) def chat(): user_message = request.json.get('message') model_path = ApiUrl if model_path: payload = { "inputs": user_message, "past_user_inputs": past_user_inputs, "generated_responses": generated_responses } bot_response = query(model_path, headers=headers, payload=payload, min_length=minOutputTokens) if bot_response is not None: past_user_inputs.append(user_message) generated_responses.append(bot_response[0]['generated_text']) response_json = {"message": bot_response, "past_user_inputs": past_user_inputs, "generated_responses": generated_responses} print(response_json) return jsonify(response_json) else: return jsonify({"message": "Error in processing the request."}), 500 else: return jsonify({"message": "Model path not provided."}), 400 if __name__ == '__main__': app.run(debug=True) ```python I really cant figure out why my min_length doesnt at all effect the output... thanks

Antworten (3)